論文

Publication List

2024

  • Matsuda, T., Kobayashi, K., Kobayashi, K., & Noda, M.
    Two parabrachial Cck neurons involved in the feedback control of thirst or salt appetite.
    Cell Reports, 43, 113619. 2024. [Summary]

2023

  • Shintani, T., Suzuki, R., Takeuchi, Y., Shirasawa, T., & Noda, M.
    Deletion or inhibition of PTPRO prevents ectopic fat accumulation and induces healthy obesity with markedly reduced systemic inflammation.
    Life Sciences, 313, 121292. 2023. [Summary]

2022

  • Noda, M., Matsuda, T.
    Central regulation of body fluid homeostasis.
    Proceedings of the Japan Academy. Series B, Physical and biological sciences. , 98, 283-324. 2022. [Summary]

  • González-Sánchez, H. M., Baek, J.-H., Weinmann-Menke, J., Ajay, A. K., Charles, J. F.-F., Noda, M., Franklin, R. A., Rodríguez-Morales, P., Kelley, V. R.,
    IL-34 and protein-tyrosine phosphatase receptor type-zeta-dependent mechanisms limit arthritis in mice.
    Laboratory Investigation, 102, 846-858. 2022. [Summary]

2020

  • Matsuda, T., Hiyama, T.Y., Kobayashi, K., Kobayashi, K., Noda, M.
    Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake.
    Nature Communications, 11, 5692. 2020. [Summary]

  • Perera, S.N., Williams, R.M., Lyne, R., Stubbs, O., Buehler, D.P., Sauka-Spengler, T., Noda, M., Micklem, G., Southard-Smith, E.M., & Baker, C.V.H.
    Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach.
    Glia, 68, 2550-2584. 2020. [Summary]

  • Sakuta, H., Lin, C.-H., Hiyama, T. Y., Matsuda, T., Yamaguchi, K.,Shigenobu, S., Kobayashi, K., & Noda, M.
    SLC9A4 in the organum vasculosum of the lamina terminalis is a [Na+] sensor for the control of water intake.
    Eur. J. Phys., 472, 609-624. 2020. [Summary]

  • Sakuta, H., Lin, C.-H., Yamada, M., Kita, Y., Tokuoka, S.M., Shimizu, T., & Noda, M.
    Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids.
    Neurosci. Res., 154, 45-51. 2020. [Summary]

2019

  • Fujikawa, A., Sugawara, H., Tanga, N., Ishii, K., Kuboyama, K., Uchiyama, S., Suszuki, R., & Noda, M.
    A head-to-toe dimerization has physiological relevance for ligand-induced inactivation of protein tyrosine receptor type Z.
    J. Biol. Chem., 294(41), 14953-14965. 2019.

  • Winkelman, B.H.J., Howlett, M. H. C., Hölzel1, M.-B., Joling, C., Fransen, K. H., Pangeni, G., Kamermans, S., Sakuta, H., Noda, M., Simonsz, H. J., McCall, M. A., De Zeeuw, C. I., & Kamermans, M.
    Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells.
    PLOS BIOL., 17, e3000174 2019.

  • Fujikawa, A., Noda, y., Yamamoto, H., Tanga, N., Sakaguchi, G., Hattori, S., Song, W.-J., Sora, I., Nabeshima, T., Katsuura, G., & Noda, M.
    Mice deficient in protein tyrosine phosphatase receptor type Z (PTPRZ) show reduced responsivity to methamphetamine despite an enhanced response to novelty.
    PLOS ONE, 14, e0221205. 2019.

  • Tanga, N., Kuboyama, K., Kishimoto, A., Kihara, M., Kiyonari, H., Watanabe, T., Fujikawa, A., & Noda, M.
    Behavioral and neurological analyses of adult mice carrying null and distinct loss-of-receptor function mutations in protein tyrosine phosphatase receptor type Z (RPTPZ).
    PLOS ONE, 14, e0217880. 2019.

  • Tanga, N., Kuboyama, K., Kishimoto, A., Kiyonari, H., Shiraishi, A., Suzuki, R., Watanabe, T., Fujikawa, A., & Noda, M.
    The PTN-PTPRZ signal activates the AFAP1L2-dependent PI3K-AKT pathway for oligodendrocyte differentiation: Targeted inactivation of PTPRZ activity in mice.
    Glia, 67, 967-984. 2019.


2018

  • Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M.
    [Na+] Increases in Body Fluids Sensed by Central Nax Induce Sympathetically Mediated Blood Pressure Elevations via H+-Dependent Activation of ASIC1a.
    Neuron 101:60-75. doi: 10.1016/j.neuron.2018.11.017. 2018.

  • Yu Y, Shintani T, Takeuchi Y, Shirasawa T, Noda M.
    Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice.
    J. Neurosci. 38:8345-63. doi: 10.1523/JNEUROSCI.0128-18.2018.

  • Suzuki R, Fujikawa A, Komatsu Y, Kuboyama K, Tanga N and Noda M.
    Enhanced extinction of aversive memories in mice lacking SPARC-related protein containing immunoglobulin domains 1 (SPIG1/FSTL4).
    Neurobiol. Learn. Mem. 152:61-70. doi: 10.1016/j.nlm.2018.05.010. 2018.

2017

  • Kuboyama K, Tanga N, Suzuki R, Fujikawa A, Noda M.
    Protamine neutralizes chondroitin sulfate proteoglycan-mediated inhibition of oligodendrocyte differentiation
    PlosONE doi.org/10.1371/journal.pone.0189164, 2017.

  • Nakayama K, Ohashi R, Shinoda Y, Yamazaki M, Abe M, Fujikawa A, Shigenobu S, Futatsugi A, Noda M, Mikoshiba K, Furuichi T, Sakimura K, Shiina N..
    RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation.
    eLife pii: e29677. doi: 10.7554/eLife.29677, 2017.

  • Fujikawa A, Chow JPH, Matsumoto M, Suzuki R, Kuboyama K, Yamamoto N, Noda M.
    Identification of novel splicing variants of protein tyrosine phosphatase receptor type Z.
    J Biochem. 162(5):381-390, 2017.

  • Shintani T, Higashi S, Suzuki R, Takeuchi Y, Ikaga R, Yamazaki T, Kobayashi K and Noda M.
    PTPRJ inhibits leptin signaling, and induction of PTPRJ in the hypothalamus is a cause of the development of leptin resistance.
    Sci. Reports ,7, 11627, 2017.

  • Fujikawa A, Sugawara H, Tanaka T, Matsumoto M, Kuboyama K, Suzuki R, Tanga N, Ogata A, Masumura M and Noda M.
    Targeting PTPRZ inhibits stem cell-like properties and tumorigenicity in glioblastoma cells.
    Sci. Reports ,7, 5609, 2017.

  • Matsuda T., Hiyama TY, Niimuara F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K and Noda M.
    Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.
    Nature Neurosci. ,20, 230-241, 2017.

  • Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin CH, Hara K, Kagawa R, Okada S, Kobayashi M, Anzo M, Cho H, Takayasu S, Nigawara T, Daimon M, Sato T, Terui K, Ito E and Noda M.
    Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ.
    Brain Pthol. , 27, 323-331, 2017.

2016

  • Hiyama T.K. and Noda M.
    Sodium sensing in the subfornical organ and body-fluid homeostasis
    Neurosci. Res., 113, 1-11, 2016.

  • Kuboyama K, Fujikawa A, Suzuki R, Tanga N and Noda M.
    Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein Tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity:
    PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION
    J. Biol. Chem. , 291, 18117-18128, 2016.

  • Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M and Urano Y.
    Detection of LacZ-positive cells in living tissue with single-cell resolution.
    Angewandte Chemie International Edition , 55, 9620-9624, 2016.

  • Sakuta H, Nishihara E, Hiyama TY, Lin CH and Noda M.
    Nax signaling evoked by an increase in [Na+] inCSF induces water intake via EET-mediated TRPV4 activation.
    Am. J. Physiol. Regul. Integr. Comp. Physiol., 311, R299-306, 2016.

  • Fujikawa A and Noda M.
    Role of pleiotrophin-protein tyrosine phosphatase receptor type Z signaling in myelination.
    Neural Regeneration Res. , 11, 549-511, 2016.

  • Fujikawa A, Nagahira A, Sugawara H, Ishii K, Imajo S, Matsumoto M, Kuboyama K, Suzuki R, Tanga N, Uchiyama S, Tomoo T, Ogata A, Masumura M and Noda M.
    Small-molecule inhibition of PTPRZ reduces tumor growth in a rat model of glioblastoma.
    Sci. Report , 6:20473. doi: 10.1038/srep20473., 2016.

2015

  • Kuboyama, K., Fujikawa, A., Suzuki, R., and Noda, M.
    Inactivation of protein tyrosine phosphatase receptor type Z by pleiotrophin promotes remyelination
    through activation of differentiation of oligodendrocyte precursor cells.
    J. Neurosci., 35, 12162-12171, 2015.

  • Matsumoto, M., Hiyama, T.Y., Kuboyama, K., Suzuki, R., Fujikawa, A. and Noda, M.
    Channel properties of Nax expressed in neurons.
    PLOS ONE, 10, e0126109, 2015.

  • Shintani T, Higashi S, Takeuchi Y, Gaudio E, Trapasso F, Fusco A and Noda M.
    The R3 receptor-like protein-tyrosine phosphatase subfamily inhibits insulin signaling by dephosphorylating
    the insulin receptor at specific sites.
    J. Biochem. 158, 235-248, 2015.

  • Noda M and Hiyama TY.
    The Nax Channel: What It Is and What It Does.
    Neuroscientist 21, 399-412, 2015.

  • Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H, Dhande OS, Noda M, Huberman AD, Nathans J and Kolodkin AL.
    Functional assembly of accessory optic system circuitry critical for compensatory eye movements.
    Neuron 86, 971-984, 2015.

  • Noda M and Hiyama TY.
    Sodium sencing in the brain.
    Pflugers Arch.- Eur. J. Phsyiol. 467, 465-474, 2015.

  • Almuriekhi M*, Shintani T*, Fahiminiya S*, Fujikawa A, Kuboyama K, Takeuchi Y, Nawaz Z, Nadaf J,
    Kamel H, Kitam AK, Samiha Z, Mahmoud L, Ben-Omran T, Majewski J and Noda M. *Co-first authors
    Loss of Function Mutation in APC2 Causes Sotos Syndrome Features.
    Cell Repotrs 10, 1585?1598, 2015.

  • Fujikawa A, Matsumoto M, Kuboyama K, Suzuki R, Noda M.
    Specific dephosphorylation at tyr-554 of git1 by ptprz promotes its association with paxillin and hic-5.
    PloS One 10(3):e0119361, 2015.

2014

  • Unezaki S, Katano T, Hiyama TY, Tu NH, Yoshii S, Noda M and Ito S.
    Involvement of Nax sodium channel in peripheral nerve regeneration via lactate signaling.
    Eur. J. Neurosci. 39, 720-729, 2014.

  • Suzuki R, Matsumoto M, Fujikawa A, Kato A, Kuboyama K, Yonehara K, Shintani T, Sakuta H, Noda M.
    SPIG1 negatively regulates BDNF maturation.
    J. Neurosci. 34, 3429-3442, 2013.


2013

  • Noda M, Sakuta H
    Central regulation of body-fluid homeostasis.
    Trends in Neuroscience 36, 661-673, 2013.

  • Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Juettner J, Noda M, Neve RL, Conzelmann KK, Roska B.
    The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells.
    Neuron 79, 1078-1085, 2013.

  • Ayoub E, Hall A, Scott AM, Chagnon MM, Miquel G, Halle M, Noda M, Bikflavi A, Tremblay ML.
    Regulation of the Src Kinase-Associated Phosphoprotein 55 Homologue by the protein tyrosine
    phosphatase PTP-PEST in the control of cell motility. J. Biol. Chem. 288, 25739-25748, 2013.

  • Sakuraba J, Shintani T, Tani S, Noda M
    Substrate specificity of R3 receptor-like protein tyrosine phosphatase subfamily towards receptor protein tyrosine kinases.
    J. Biol. Chem. 288, 23421-23431, 2013.

  • Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, and Noda M.
    Endothelin-3 Expression in the Subfornical Organ Enhances the Sensitivity of Nax, the Brain Sodium-Level Sensor, to Suppress Salt Intake.
    Cell Metabol. 17, 507-519, 2013.

2012

  • Kuboyama K, Fujikawa A, Masumura M, Suzuki R, Matsumoto M and Noda M.
    Protein Tyrosine Phosphatase Receptor Type Z Negatively Regulates Oligodendrocyte Differentiation and Myelination.
    PloS One 7(11): e48797. doi:10.1371/journal.pone.0048797, 2012

  • Matsumoto M, Fujikawa A, Suzuki R, Shimizu H, Kuboyama K, Hiyama TY, Hall RA and Noda M.
    SAP97 prpmotes the stability of Na(x) channels at the plasma membrane.
    FEBS lett. 586, 3805-3812, 2012.

  • Sugitani K, Ogai K, Hitomi K, Nakamura-Yonehara K, Shintani T, Noda M, Koriyama Y, Tanii H,
    Matsukawa T and Kato S.
    A distinct effect of transient and sustained upregulation of cellular factor XIII in the goldfish retina and optic nerve regeneration.
    Neurochem. Int. 61, 423-432, 2012.

  • Shintani, T., Takeuchi, Y., Fujikawa, A. and Noda, M.
    Directional neuronal migration is impaired in mice lacking adenomatous polyposis coli 2.
    J. Neurosci. 32, 6468-6484, 2012.

2011

  • Fujikawa, A, Fukada, M, Makioka, Y, Suzuki, R, Chow, JP, Matsumoto, M and Noda, M
    Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z
    J. Biol. Chem. 286, 37137-37146, 2011.

  • Nishihara, E, Hiyama, TY and Noda, M.
    Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons.
    PLoS ONE 6(7), e22246, 2011.  doi:10.1371/journal.pone.0022246 

  • Sakamoto K, Bu G, Chen S, Takei Y, Hibi K, Kodera Y, McCormick LM, Nakao A, Noda M, Muramatsu T, Kadomatsu K.
    The premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1(LRP1).
    J. Biol. Chem. 286, 8405-8413, 2011.

  • Yonehara, K., Balint, K., Noda, M., Nagel, G., Bamberg, E. and Roska, B.
    Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit.
    Nature 469, 407-410, 2011.

  • Nayak, G., Goodyear, R.J., Legan, P.K., Noda, M. and Richardson G.P.
    Evidence for multiple, developmentally regulated isoforms of PTPRQ on hair cells of the inner ear.
    Dev. Neurobiol. 71, 129-141, 2011.

2010

  • Chagnon, M.J., Wu, C.L., Nakazawa, T., Yamamoto, T., Noda, M,. Blanchetot, C., and Tremblay, M.L.
    Receptor tyrosine phosphatase sigma (RPTPsigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling.
    Cell. Signal. 22, 1626-1633, 2010.

  • Hiyama, T.Y., Matsuda, S, Fujikawa, A., Matsumoto, M., Watanabe, E., Kajiwara, H., Niimura, F., and Noda, M.
    Autoimmunity to the Sodium-Level Sensor in the Brain Causes Essential Hypernatremia.
    Neuron 66, 508-522, 2010. [Neuron Featured Article] [関連記事]
    This paper is selected as a 'Must read' paper by Faculty of 1000 (selected by Dr. Angela Vincent).

  • Nagakura, A., Hiyama, T.Y., and Noda, M.
    Na(x)-deficient mice show normal vasopression response to dehydration.
    Neurosci. Letts. 472, 161-165, 2010.

2009

  • Shintani, T., Ihara, M., Tani, S., Sakuraba, J., Sakuta, H., and Noda, M.
    APC2 plays an essential role in axonal projections through the regulation of microtubule stability.
    J. Neurosci. 29(37):11628-11640, 2009. [関連記事]

  • Toychiev, A., Sabirov, R., Takahashi, N., Ando-Akatsuka, Y., Liu, H., Shintani, T., Noda, M., and Okada, Y.
    Activation of the maxi-anion channel by protein tyrosine dephosphorylation.
    Am. J. Physiol. Cell Physiol. 297(4):C990-1000, 2009.

  • Takahashi, H., Sakuta, H., Shintani, T. and Noda, M.
    Functional mode of FOXD1/CBF2 for the extablishment of temporal retinal specificity in the developing chick retina.
    Dev. Biol. 331(2): 300-310, 2009.

  • Yonehara, K., Ishikane, H., Sakuta, H., Shintani, T., Nakamura-Yonehara, K. Kamiji, N.L., Usui, S., and Noda, M.
    Identification of Retinal Ganglion Cells and their Projections Involved in Central Transmission of Information about Upward and Downward Image Motion. PLoS ONE 2009, 4(1): e4320. doi:10.1371/journal.pone.0004320
    [Summary] [紹介記事]
    This paper is selected as a 'Must read' paper by Faculty of 1000 (selected by Klaus-Peter Hoffmann with Dr. Olivia Masseck ).

2008

  • Noda, M., Takahashi, H., and Sakuta, H.
    Neural Patterning: Eye Fields.
    Encyclopedia of Neuroscience 199-204. 2008 Nov 4 [Online available]

  • Chow, J.P., Fujikawa, A., Shimizu, H., Suzuki, R., and Noda, M.
    Metalloproteinase- and gamma -secretase-mediated cleavage of protein tyrosine phosphatase receptor type Z.
    J. Biol. Chem. 283(45):30879-30889, 2009.

  • Chow, J.P., Fujikawa, A., Shimizu, H., and Noda, M.
    Plasmin-mediated processing of protein tyrosine phosphatase receptor type Z in the mouse brain.
    Neurosci. Lett. 2008 442(3):208-212.

  • Sakuta, H., Suzuki, R., and Noda, M.
    Retrovirus vector-mediated gene transfer into the chick optic vesicle by in ovo electroporation.
    Dev Growth Differ. 2008 50(6):453-457.

  • Shintani, T., and Noda, M.
    Protein Tyrosine Phosphatase Receptor Type Z Dephosphorylates TrkA Receptors and Attenuates
    NGF-dependent Neurite Outgrowth of PC12 Cells. J Biochem. 2008 144(2): 259-266.
    JB論文賞受賞

  • Tsuboi, N., Utsunomiya, T., Roberts, R.L., Ito, H., Takahashi, K., Noda, M., and Takahashi, T.
    The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase.
    Biochem. J. 2008, 413: 193-200.

  • Yonehara, K., Shintani, T., Suzuki, R., Sakuta, H., Takeuchi, Y., Nakamura-Yonehara, K. and Noda, M.
    Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse.
    PLoS ONE 2008, 3(2): e1533. doi:10.1371/journal.pone.0001533
    [紹介記事] [Summary]
    This paper is selected as a 'Must read' paper by Faculty of 1000 (selected by Dr. Marla Feller).

2007

  • ujikawa, A., Chow, J.P.H., Shimizu, H., Fukada, M.., Suzuki, R. and Noda, M.
    Tyrosine Phosphorylation of ErbB4 is Enhanced by PSD95 and Repressed by Protein Tyrosine Phosphatase Receptor Type Z.
    J. Biochem. (Tokyo), 2007, 142: 343-350 [Summary]
    JB論文賞受賞

  • Shimizu, H., Watanabe, E., Hiyama, T.Y., Nagakura, A., Fujikawa, A., Okado, H., Yanagawa, Y., Obata, K. and Noda, M.
    Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing.
    Neuron 2007, 54: 59-72. [紹介記事]  [Summary] [Science Editor's choice] [Neuron Preview]
    This paper is selected as a 'Exceptional' paper by Faculty of 1000.

  • Noda, M.
    Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp.
    Physiol. 2007, 92: 513-522.

2006

  • Sakuta, H., Takahashi, H., Shintani, T., Etani, K., Aoshima, A., and Noda, M.
    Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection.
    J. Neurosci., 2006, 26: 10868-10878.. [Summary]

  • Sugitani, K., Matsunaga, T., Koriyama, Y., Shintani, T., Nakamura, T., Noda, M., and Kato, S.
    Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration.
    Neuroscience, 2006, 142: 1081-1092. [Summary]

  • Fukuda, M, Fujikawa, A, Chow, JP, Ikematsu, S, Sakuma, S, and Noda, M
    Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization.
    FEBS letters, 2006, 580: 4051-4056. [Summary]

  • Shintani, T., Ihara, M., Sakuta, H., Takahashi, H., Watakabe, I., and Noda, M.
    Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O.
    Nature Neurosci., 2006, 9: 761-769. [紹介記事] [Summary]
    This paper is selected as a 'Must read' paper by Faculty of 1000 (selected by Dr. David Wilkinson and Dr. Harukazu Nakamura).

  • Fukada, M., and Noda, M.
    Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases. Methods in
    Mol. Biol., 2006, 65:371-382. [Summary]

  • Tamura, H., Fukada, M., Fujikawa, A., and Noda, M.
    Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP.
    Neurosci. Letts., 2006, 399: 33-38. [Summary]

  • Watanabe, E., Hiyama, T.Y., Shimizu, H., Kodama, R., Hayashi, N., Miyata, S., Yanagawa, Y., Obata, K., and Noda, M.
    Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs.
    Am J Physiol Regul Integr Comp Physiol, 2006, 290: R568-576. [Summary]
    This paper is selected as a 'Must read' paper by Faculty of 1000 (selected by Dr. Alastair Ferguson).

  • Noda, M.
    The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain.
    The Neuroscientist, 2006, 12: 80-91.

2005

  • Niisato K., Fujikawa A., Komai S., Shintani T., Watanabe E., Sakaguchi G., Katsuura G., Manabe T., and Noda M.
    Age-Dependent Enhancement of Hippocampal Long-Term Potentiation and Impairment of Spatial Learning through the Rho-Associated Kinase Pathway in Protein Tyrosine Phosphatase Receptor Type Z-Deficient Mice.
    J. Neurosci. 2005, 25:1081-1088.

  • Fukada M., Kawachi H., Fujikawa A. and Noda M.
    Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: isolation of substrates for protein tyrosine phosphatase receptor type z.
    Methods, 2005, 35: 54-63. [Summary]

  • Noda, M. & Hiyama, T.Y.
    Sodium-level-sensitive sodium channel and salt-intake behavior.
    Chem. Senses, 2005, 30 (Supple. 1): i44-i45.

2004

  • Muramatsu H., Zou P., Suzuki H., Oda Y., Chen GY, Sakaguchi N., Sakuma S., Maeda N., Noda M., Takada Y., and Muramatsu T.
    a4β1- and a6β1-integrins are functional receptors for midkine, a heparin-binding growth factor.
    J Cell Sci, 2004, 117: 5405-5415. [Summary]

  • Hiyama T.Y., Watanabe E., Okado H. and Noda M.
    The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior.
    J. Neurosci., 2004, 24: 9276-9281. [Summary]  [関連記事]
    This paper is selected as a 'Recommended' paper by Faculty of 1000 (selected by Dr. Stephan Roper).

  • Ohkawara T., Shintani T., Saegusa C., Yuasa-Kawada J., Takahashi M. and Noda M.
    A novel basic helix-loop-helix (bHLH) transcriptional repressor, NeuroAB, expressed in bipolar and amacrine cells in the chick retina.
    Mol Brain Res. 2004,128:58-74. [Summary]

  • Ohyama, K., Ikeda, E., Kawamura, K., Maeda, N. and Noda, M.
    Receptor-like protein tyrosine phosphatase ζ/RPTPβ is expressed on tangenially aligned neurons in early mouse neocortex.
    Develop. Brain Res., 2004, 148: 121-127. [Summary]

  • Shintani, T., Kato, A., Yuasa-Kawada, J., Sakuta, H., Takahashi, M., Suzuki, R., Ohkawara, T., Takahashi, H. Noda, M.
    Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina.
    J. Neurobiol., 2004, 59: 34-47. [Summary]

  • Nakayama, M., Kimura, M., Wada, A., Yahiro, K., Ogushi, K.I., Niidome, T., Fujikawa, A., Shirasaka, D., Aoyama, N., Kurazono, H., Noda, M., Moss, J. & Hirayama, T.
    Helicobacter pylori VacA activates the p38/activating transcription factor 2-mediated signal pathway in AZ-521 cells.
    J Biol Chem., 2004, 279: 7024-7028. [Summary]

2003

  • Takahashi, H., Shintani, T., Sakuta, H. & Noda, M.
    CBF-1 controls the retinotectal topographic map along the anteroposterior axis through multiple mechanisms.
    Development, 2003, 130: 5203-5215. [Summary] [紹介記事]
    This paper is selected as a 'Must read' paper by Faculty of 1000 (selected by Dr. Harukazu Nakamura).

  • Yuasa-Kawada, J., Suzuki, R., Kano, F., Ohkawara, T., Murata, M. & Noda, M.
    Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization.
    Eur. J. Neurosci., 2003, 17: 2329-2343. [Summary]

  • Watanabe, U., Shimura, T., Sako, N., Kitagawa, J., Shingai, T., Watanabe, E., Noda, M. & Yamamoto, T.
    A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs.
    Brain Res., 2003, 967(1-2): 247-56. [Summary]

  • Sakaguchi, N., Muramatsu, H., Ichihara-Tanaka, K., Maeda, N., Noda, M., Yamamoto, T., Michikawa, M., Ikematsu, S., Sakuma, S. & Muramatsu, T.
    Receptor-type protein tyrosine phosphatase z as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons.
    Neurosci. Res., 2003, 45: 219-224. [Summary]

  • Asahi, M., Tanaka, Y., Izumi, T., Ito, Y., Naiki, H., Kersulyte, D., Tsujikawa, K., Saito, M., Sada, K., Yanagi, S., Fujikawa, A., Noda, M. & Itokawa, Y.
    Helicobacter pylori CagA containing ITAM-like sequences localized to lipid rafts negatively regulates VacA-induced signaling in vivo.
    Helicobacter, 2003, 8:1-14.

  • Fujikawa, A., Shirasaka, D., Yamamoto, S., Ota, H., Yahiro, K., Fukada, M., Shintani, T., Wada, A., Aoyama, N., Hirayama, T., Fukamachi, H. & Noda, M.
    Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori.
    Nature Genetics, 2003, 33: 375-381. [Summary] [紹介記事]
    This paper is selected as a 'Recommended' paper by Faculty of 1000 (selected by Dr. Rino Rappuoli).

  • Tanaka, M., Maeda, N., Noda, M. & Marunouchi, T.
    A chondroitin sulfate proteoglycan PTPζ/RPTPβ regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum.
    J. Neurosci., 2003, 23: 2804-2814. [Summary]

2002

  • Watanabe E, Hiyama TY, Kodama R, & Noda M.
    Nax sodium channel is expressed in non-myelinating Schwann cells and alvelar type II cells in mice.
    Neurosci. Lett., 2002, 330:109-113. [Summary]

  • Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, & Noda M.
    Nax is involved in the sodium level sensing in the CNS.
    Nature Neruoscience, 2002 Jun;5(6): 511-2. [Summary] [紹介記事]

  • Zubair M, Watanabe E, Fukada M, & Noda M.
    Genetic labelling of specific axonal pathways in the mouse central nervous system.
    Eur J Neurosci, 2002 Mar;15(5): 807-814. [Summary]

2001

  • Thomaidou D, Coquillat D, Meintanis S, Noda M, Rougon G, & Matsas R.
    Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell migration: identification of protein tyrosine phosphatases zeta/beta as the putative F3 receptors on Schwann cells.
    J Neurochem, 2001 Aug; 78(4): 767-778. [Summary]

  • Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Iemura SH, Yamamoto TS, Ueno N, & Noda M.
    Ventroptin: A BMP-4 Antagonist Expressed in a Double-Gradient Pattern in the Retina.
    Science, 2001 Jul 6;293: 111-115. [Summary] [新聞記事]

  • Kawachi H, Fujikawa A, Maeda N, & Noda M.
    Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase zeta /beta by the yeast substrate-trapping system.
    Proc Natl Acad Sci U S A. 2001 Jun 5;98(12): 6593-8. [Summary]

  • Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E, Nagafuji H, Noda M, Imoto K, Wada K, Mitsudome A, Kaneko S, Montal M, Nagata K, Hirose S, & Yamakawa K.
    A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction.
    Proc Natl Acad Sci U S A. 2001 May 22;98(11): 6384-9. [Summary]

  • Qi M, Ikematsu S, Maeda N, Ichihara-Tanaka K, Sakuma S, Noda M, Muramatsu T, & Kadomatsu K.
    Haptotactic Migration Induced by Midkine. Involvement of Protein-Tyrosine Phosphatase ζ, Mitogen-Activated Protein Kinase, and Phosphatidylinositol 3-Kinase.
    J Biol Chem. 2001 May 11;276(19): 15868-15875. [Summary]

  • Shintani T, Maeda N, & Noda M.
    Receptor-Like Protein Tyrosine Phosphatase γ (RPTPγ), But Not PTPζ/RPTPβ, Inhibits Nerve-Growth-Factor-Induced Neurite Outgrowth in PC12D Cells.
    Dev Neurosci. 2001 Jan;23(1): 55-69. [Summary]

1980-2000

  • Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, & Catterall WA.
    Nomenclature of voltage-gated sodium channels.
    Neuron. 2000 Nov;28(2): 365-368

  • Suzuki R, Shintani T, Sakuta H, Kato A, Ohkawara T, Osumi N, & Noda M.
    Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in the ventral region of the retina.
    Mech Dev. 2000 Nov;98(1-2): 37-50. [Summary]

  • Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, & Noda M.
    Nav2/NaG channel is involved in control of salt-intake behavior in the CNS.
    J Neurosci. 2000 Oct 15;20(20): 7743-51. [Summary]

  • Fukada M, Watakabe I, Yuasa-Kawada J, Kawachi H, Kuroiwa A, Matsuda Y, & Noda M.
    Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family.
    J Biol Chem. 2000 Dec 1;275(48): 37957-65. [Summary]

  • Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, & Deuel TF.  
    Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ.
    Proc Natl Acad Sci U S A. 2000 Mar 14;97(6): 2603-8. [Summary]

  • Yamagata M, Mai A, Pollerberg GE, & Noda M.
    Regulatory interrelations among topographic molecules CBF1, CBF2 and EphA3 in the developing chick retina.
    Dev Growth Differ. 1999 Oct;41(5): 575-87. [Summary]

  • Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, & Noda M.
    Protein tyrosine phosphatase ζ/RPTPβ interacts with PSD-95/SAP90 family.
    Brain Res Mol Brain Res. 1999 Sep 8;72(1): 47-54. [Summary]

  • Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, & Noda M.
    A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPζ.
    J Biol Chem. 1999 Apr 30;274(18): 12474-9. [Summary]

  • Takahashi M, Yamagata M, & Noda M.
    Specific expression of ezrin, a cytoskeletal-membrane linker protein, in a subset of chick retinotectal and sensory projections.
    Eur J Neurosci. 1999 Feb;11(2): 545-58. [Summary]

  • Revest JM, Faivre-Sarrailh C, Maeda N, Noda M, Schachner M, & Rougon G.
    The interaction between F3 immunoglobulin domains and protein tyrosine phosphatases ζ/β triggers bidirectional signalling between neurons and glial cells.
    Eur J Neurosci. 1999 Apr;11(4): 1134-47. [Summary]

  • Yamakawa T, Kurosawa N, Kadomatsu K, Matsui T, Itoh K, Maeda N, Noda M, & Muramatsu T.
    Levels of expression of pleiotrophin and protein tyrosine phosphatase ζ are decreased in human colorectal cancers.
    Cancer Lett. 1999 Jan 8;135(1): 91-6. [Summary]

  • Yamagata M & Noda M.
    The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells.
    Neurosci Lett. 1998 Jun 12;249(1): 33-6. [Summary]

  • Maeda N & Noda M.
    Involvement of receptor-like protein tyrosine phosphatase ζ/RPTPβ and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration.
    J Cell Biol. 1998 Jul 13;142(1): 203-16. [Summary]

  • Shintani T, Watanabe E, Maeda N, & Noda M.
    Neurons as well as astrocytes express proteoglycan-type protein tyrosine phosphatase ζ/RPTPβ: analysis of mice in which the PTPζ/RPTPβ gene was replaced with the LacZ gene.
    Neurosci Lett. 1998 May 15;247(2-3): 135-8. [Summary]

  • Nishiwaki T, Maeda N, & Noda M.
    Characterization and developmental regulation of proteoglycan-type protein tyrosine phosphatase ζ/RPTPβ isoforms.
    J Biochem (Tokyo). 1998 Mar;123(3): 458-67. [Summary]

  • Hamanaka H, Maeda N, & Noda M.
    Spatially and temporally regulated modification of the receptor-like protein tyrosine phosphatase ζ/β isoforms with keratan sulphate in the developing chick brain.
    Eur J Neurosci. 1997 Nov;9(11): 2297-308. [Summary]

  • Shintani T, Maeda N, Nishiwaki T, & Noda M.
    Characterization of rat receptor-like protein tyrosine phosphatase γ isoforms.
    Biochem Biophys Res Commun. 1997 Jan 13;230(2): 419-25. [Summary]

  • Yuasa J, Hirano S, Yamagata M, & Noda M.
    Visual projection map specified by topographic expression of transcription factors in the retina.
    Nature. 1996 Aug 15;382(6592): 632-5. [Summary]

  • Maeda N, Nishiwaki T, Shintani T, Hamanaka H, & Noda M.
    6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase ζ/RPTPβ, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM).
    J Biol Chem. 1996 Aug 30;271(35): 21446-52. [Summary]

  • Maeda N & Noda M.
    6B4 proteoglycan/phosphacan is a repulsive substratum but promotes morphological differentiation of cortical neurons.
    Development. 1996 Feb;122(2): 647-58. [Summary]

  • Watanabe E, Matsui F, Keino H, Ono K, Kushima Y, Noda M, & Oohira A.
    A membrane-bound heparan sulfate proteoglycan that is transiently expressed on growing axons in the rat brain.
    J Neurosci Res. 1996 Apr 1;44(1): 84-96. [Summary]

  • Maeda N, Hamanaka H, Oohira A, & Noda M.
    Purification, characterization and developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4 proteoglycan/phosphacan.
    Neuroscience. 1995 Jul;67(1): 23-35. [Summary]

  • Watanabe E, Maeda N, Matsui F, Kushima Y, Noda M, & Oohira A.
    Neuroglycan C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the brain.
    J Biol Chem. 1995 Nov 10;270(45): 26876-82. [Summary]

  • Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, & Bonhoeffer F.
    In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases.
    Cell. 1995 Aug 11;82(3): 359-70. [Summary]

  • Maeda N, Hamanaka H, Shintani T, Nishiwaki T, & Noda M.
    Multiple receptor-like protein tyrosine phosphatases in the form of chondroitin sulfate proteoglycan.
    FEBS Lett. 1994 Oct 31;354(1): 67-70. [Summary]

  • Noda M.
    Structure and function of sodium channels.
    Ann N Y Acad Sci. 1993 Dec 20;707: 20-37.

  • Pusch, M., Noda, M., Stumer, W., Numa, S. & Conti, F. (1991) Single point mutations of the sodium channel drastically reduce the pore permeability without preventing its gating.
    Eur. Biophys. J. 20, 127-133. [Summary]

  • Noda, M., Suzuki, H., Numa, S. & St殄mer, W. (1989) A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II.
    FEBS Lett. 259, 213-216. [Summary]

  • Beckh, S., Noda, M., Lubert, H. & Numa, S. (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development.
    EMBO J. 8, 3611-3616. [Summary]

  • Stumer, W., Conti, F., Suzuki, H., Wang, X. / Noda, M., Yahagi, N., Kubo, H. & Numa, S. (1989) Structural parts involved in activation and inactivation of the sodium channel.
    Nature 339, 597-603.

  • Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M. & Numa, S. (1988) Functional expression of cloned cDNA encoding sodium channel III.
    FEBS Lett. 228, 195-200.

  • Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence.
    FEBS Lett. 228, 187-194.

  • Stumer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA.
    Eur. Biophys. J. 14, 131-138.

  • Noda, M. & Numa, S. (1987) Structure and function of sodium channel.
    J. Receptor Res. 7, 467-497.

  • Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. & Numa, S. (1986) Expression of functional sodium channels from cloned cDNA.
    Nature 322, 826-828.

  • Numa, S. & Noda, M. (1986) Molecular structure of sodium channels.
    Ann. N. Y. Acad. Sci. 479, 338-355.

  • Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C. & Sakmann, B. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.
    Nature 321, 406-411.

  • Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H. & Numa, S. (1986) Primary structure of the a-subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence.
    FEBS Lett. 197, 305-310.

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. & Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain.
    Nature 320, 188-192.

  • Noguchi, S., Noda, M., Takahashi, H., Kawakami, K., Ohta, T., Nagano, K., Hirose, T., Inayama, S., Kawamura, M. & Numa, S. (1986) Primary structure of the b-subunit of Torpedo californica (Na+ + K+)-ATPase deduced from the cDNA sequence.
    FEBS Lett. 196, 315-320.

  • Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Hirose, T., Inayama, S. & Numa, S. (1986) Primary structure of the a-subunit of bovine adenylate cyclase-stimulating G-protein deduced from the cDNA sequence.
    FEBS Lett. 195, 220-224.

  • Sugimoto, K., Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Minamino, N., Kangawa, K., Matsuo, H., Hirose, T., Inayama, S. & Numa, S. (1985) Primary structure of the b-subunit of bovine transducin deduced from the cDNA sequence.
    FEBS Lett. 191, 235-240.

  • Kawakami, K., Noguchi, S., Noda, M., Takahashi, H., Ohta, T., Kawamura, M., Nojima, H., Nagano, K., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1985) Primary structure of the a-subunit of Torpedo calfornica (Na+ + K+)-ATPase deduced from cDNA sequence.
    Nature 316, 733-736.

  • Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Takahashi, H., Takahashi, T., Kuno, M. & Numa, S. (1985) Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle.
    Nature 315, 761-764.

  • Tanabe, T., Nukada, T., Nishikawa, Y., Sugimoto, K., Suzuki, H., Takahashi, H., Noda, M., Haga, T., Ichiyama, A., Kangawa, K., Minamino, N., Matsuo, H. & Numa, S. (1985) Primary structure of the a-subunit of transducin and its relationship to ras proteins.
    Nature 315, 242-245.

  • Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T. & Numa, S. (1985) Primary structure of g-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence.
    Eur. J. Biochem. 149, 5-13.

  • Shibahara, S., Kubo, T., Perski, H.J., Takahashi, H., Noda, M. & Numa, S. (1985) Cloning and sequence analysis of human genomic DNA encoding g-subunit precursor of muscle acetylcholine receptor.
    Eur. J. Biochem. 146, 15-22.

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, T., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence.
    Nature 312, 121-127.

  • Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K., Hirose, T., Inayama, S. & Numa, S. (1984) Primary structure of b-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence.
    Eur. J. Biochem. 144, 11-17.

  • Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S. & Numa, S. (1984) Primary structure of g-subunit precursor of calf-muscle acetylcoline receptor deduced from the cDNA sequence.
    Eur. J. Biochem. 143, 109-115.

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. & Numa, S. (1984) Expression of functional acetylcholine receptor from cloned cDNAs.
    Nature 307, 604-608.

  • Numa, S., Noda, M., Takahashi, H., Tanabe T., Toyosato, M., Furutani, Y. & Kikyotani, S. (1983) Molecular structure of the nicotinic acetylcholine receptor.
    Cold Spring Harbor Symp. Quant. Biol. 48, 57-69.

  • Horikawa, S., Takai, T., Toyosato, M., Takahashi, H., Noda, M., Kakidani, H., Kubo, T., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1983) Isolation and structural organization of the human preproenkephalin B gene.
    Nature 306, 611-614.

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotaini, S., Kayano, T., Hirose, T., Inayama, S. & Numa, S. (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor.
    Nature 305, 818-823.

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits.
    Nature 302, 528-532.

  • Furutani, Y., Morimoto, Y., Shibahara, S., Noda, M., Takahashi, H., Hirose, T., Asai, M., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1983) Cloning and sequence analysis of cDNA for bovine corticotropin-releasing factor precursor. Nature 301, 537-540.

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983) Primary structures of b- and g-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences.
    Nature 301, 251-255.

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. & Numa, S. (1982) Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence.
    Nature 299, 793-797.

  • Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S. & Numa, S. (1982) Cloning and sequence analysis of cDNA for porcine b-neo-endorphin/dynorphin precursor.
    Nature 298, 245-249.

  • Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S. & Numa, S. (1982) Isolation and structural organization of the human preproenkephalin gene.
    Nature 297, 431-434.

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S. & Numa, S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin.
    Nature 295, 202-206.

  • Nakanishi, S., Teranishi, Y., Watanabe, Y., Notake, M., Noda, M., Kakidani, H., Jingami, H. & Numa, S. (1981) Isolation and characterization of the bovine corticotropin/b-lipotropin precursor gene.
    Eur. J. Biochem. 115, 429-438.

  • Nakanishi, S., Teranishi, Y., Noda, M., Notake, M., Watanabe, Y., Kakidani, H., Jingami, H. & Numa, S. (1980) The protein-coding sequence of the bovine ACTH-b-LPH precursor gene is split near the signal peptide region.
    Nature 287, 752-755.


Back